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The present studies arose from our interest in the enantiose-
lective synthesis of 2-substituted chromenes,1 a structural unit
found within a myriad of medicinally important agents.2 In this
context, extensive efforts by us to use the Zr-catalyzed kinetic
resolution of unsaturated pyrans3 to obtain nonracemic chromenes
led to uncharacteristically low levels of selectivity (∼10% ee
at 60% conversion). Alternatively, as shown in Scheme 1, we
envisioned that styrenyl allylic ethers, possess alkenes with
appropriate electronic attributes4 so that, with the Grubbs
metathesis catalyst (PCy3)2Cl2RudCHCHdCPh2 (3),5 they
might undergo a net skeletal rearrangement to yield the desired
isomeric heterocyclic products.6 Importantly, rearrangement
substrates would be synthesized in the nonracemic form by the
Zr-catalyzed kinetic resolution.7

Previous reports suggest that Ru-catalyzed ring-closing met-
atheses can be influenced by thermodynamic factors;8 we thus
selected4 as our initial case study. We surmised that strain
energy of the seven-membered ring would serve as the driving
force for the formation of the less-strained chromene. When4
is treated with 5 mol % of3, as shown in entry 1 of Table 1,
5 is obtained in 44% yield. In addition, dimer6 is isolated in
56% yield (mixture of alkene isomers). Products from inde-
pendent rupture of the cycloheptene, or any of the derived
dimeric adducts, were not detected. Under more dilute condi-
tions (entry 2),5 becomes the major product, albeit the reaction
proceeds less readily and with low monomer/dimer selectivity.
When the Ru-catalyzed rearrangement is carried out under
ethylene atomsphere, monomeric5 is obtained in 92% yield.
A plausible mechanism for the Ru-catalyzed rearrangement

is presented (Scheme 2). Reaction of4with 3 delivers7, which
is cleaved to provide8. Subsequent intramolecular addition
affords9, which rearranges to chromene-containing10, reaction
of which with a second equivalent of4 yields5 and regenerates
8. Additionally, as increasing amounts of5 are produced,10
may react with5 to afford6. With ethylene present (entry 3,
Table 1), less dimer is formed, likely because the olefinic
additive competitively reacts with10 to produce5 and Ln-

RudCH2. This modification is perhaps effective since
larger amounts of the external alkene are present, leading to
the formation of the more reactive (toward styrenyl ether)
LnRudCH2.9

The catalytic cycle may also commence with reaction of3
with the carbocyclic olefin. Several observations, however,
imply that terminal alkene of styrene reacts first. For example,
the intermolecular variant (cross-metathesis)10 of this process
is inoperative; treatment of an equimolar mixture of11 and12
with 5 mol% 3 leads to<2% reaction. Without11, under

otherwise identical conditions, large amounts of oligomeric
products are isolated.11 These observations imply that11
effectively competes with allylic ether12 for the active Ru
complex. It is tenable that chelated complex13 sequesters the
active Ru system to inhibit oligomerization of12.12
As illustrated in Table 2, styrenyl ethers derived from

1-cyclohepten-2-ol and 1-cycloocten-2-ol, which are of diverse
electronic properties, undergo efficient rearrangement to afford
the derived chromene system in excellent yield. The electronic
properties of the aromatic moiety do not have a significant
influence on the reactivity of the diene substrates. In all cases,
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Scheme 1

Table 1. Ru-Catalyzed Rearrangement of the Styrenyl Ether of
1-Cyclohepten-2-ol

aConditions: (A) 5 mol % of3, CH2Cl2, 22 °C, Ar atmosphere,
10-14 h; (B) same as A, except under 1 atm of C2H4. b Isolated yields.
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the rearranged monomer is obtained in high efficiency with little
or no formation of the corresponding dimer.
In contrast to seven- and eight-membered rings, under

identical conditions, cyclopentenyl styrenyl ether (18) does not
provide any reaction products after 16 h (eq 1).13 Ru-catalyzed

rearrangement of19 proceeds less efficiently than the larger
ring 4 and16a to afford20 in 35% yield (ethylene atmosphere;
65% recovered19, <2% dimer).14 Elevated temperatures and
prolonged reaction times (10 mol % of3, 48 h, 45°C, Ar
atmosphere) lead to exclusive formation of the derived dimer
in 92% isolated yield. With regard to the lower reactivity of
smaller rings, it is possible that the reduction in reactivity for
the five- and six-membered ring systems may be due to the
higher degree of angle strain present in the metallacycle
intermediates represented by9 in Scheme 2.
As was mentioned before, an attractive feature of the Ru-

catalyzed process is that racemic allylic ether substrates can be
catalytically resolved. The Zr-catalyzed kinetic resolution of
styrenyl systems described above is inefficient, however, due

to competitive and nonselective alkylation of the resident
terminal olefin. Hence, we turned our attention to cyclic allylic
ethers that bear substituted styrenes. As shown in Scheme 3,
â-methylstyrenyl ether21 is resolved effectively by the Zr-
catalyzed protocol (98% yield based on percent conversion).
The latter plan proved undesireable, however, because (1) the
Ru-catalyzed reaction ofâ-methyl styrene system is inefficient
(∼20-45% yield) and (2) since the rearrangement only proceeds
under more forcing conditions, it exclusively affords chromene
dimer (S,S)-6. This difficulty is easily overcome when the
optically pure substrate (e.g., (S)-21) is subjected to the catalytic
rearrangement conditions (22°C, 24 h) under ethylene atmo-
sphere;(S)-5 is obtained readily in 81% yield (after chroma-
tography).15 It is not clear at present whether ruthenium-
carbene complex(S)-8 (Scheme 2) is directly generated and
subsequently converted to(S)-5, or if styrenyl ether(S)-4 is
formed first (cross-metathesis)10 and then proceeds through(S)-8
to give the chiral heterocycle (both intermediates may be
involved as well). With the less reactive disubstituted styrene
21, the cycloalkene site may be where reaction is initiated. If
so, rearrangement under ethylene could be more effective
because the more reactive LnRudCH2 (vs LnRudCH(CH3)) is
then responsible for initiating a new catalytic cycle; these and
other mechanistic details are under scrutiny.
We have demonstrated that a Zr-catalyzed kinetic resolution

can be followed by a Ru-catalyzed rearrangement to deliver
2-substituted chromene systems efficiently and with outstanding
enantiopurity. The application of the tandem catalytic resolu-
tion/rearrangement to the enantioselective synthesis of biologi-
cally important agents will be the subject of future disclosures
from these laboratories.
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Scheme 2

Table 2. Ru-Catalyzed Rearrangements of Seven- and
Eight-Membered Ring Styrenyl Ethersa

a For conditions A and B, see the legend for Table 1.b Isolated yields.
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